Concentration of Measure for Block Diagonal Matrices with Applications to Compressive Sensing
نویسندگان
چکیده
Theoretical analysis of randomized, compressive operators often depends on a concentration of measure inequality for the operator in question. Typically, such inequalities quantify the likelihood that a random matrix will preserve the norm of a signal after multiplication. When this likelihood is very high for any signal, the random matrices have a variety of known uses in dimensionality reduction and Compressive Sensing. Concentration of measure results are well-established for unstructured compressive matrices, populated with independent and identically distributed (i.i.d.) random entries. Many real-world acquisition systems, however, are subject to architectural constraints that make such matrices impractical. In this paper we derive concentration of measure bounds for two types of block diagonal compressive matrices, one in which the blocks along the main diagonal are random and independent, and one in which the blocks are random but equal. For both types of matrices, we show that the likelihood of norm preservation depends on certain properties of the signal being measured, but that for the best case signals, both types of block diagonal matrices can offer concentration performance on par with their unstructured, i.i.d. counterparts. We support our theoretical results with illustrative simulations as well as (analytical and empirical) investigations of several signal classes that are highly amenable to measurement using block diagonal matrices. Finally, we discuss applications of these results in establishing performance guarantees for solving signal processing tasks in the compressed domain (e.g., signal detection), and in establishing the Restricted Isometry Property for the Toeplitz matrices that arise in compressive channel sensing.
منابع مشابه
ON THE FUNCTION OF BLOCK ANTI DIAGONAL MATRICES AND ITS APPLICATION
The matrix functions appear in several applications in engineering and sciences. The computation of these functions almost involved complicated theory. Thus, improving the concept theoretically seems unavoidable to obtain some new relations and algorithms for evaluating these functions. The aim of this paper is proposing some new reciprocal for the function of block anti diagonal matrices. More...
متن کاملThe Restricted Isometry Property for Random Block Diagonal Matrices
In Compressive Sensing, the Restricted Isometry Property (RIP) ensures that robust recovery of sparsevectors is possible from noisy, undersampled measurements via computationally tractable algorithms. Itis by now well-known that Gaussian (or, more generally, sub-Gaussian) random matrices satisfy the RIPunder certain conditions on the number of measurements. Their use can be limi...
متن کاملOn the Relation between Block Diagonal Matrices and Compressive Toeplitz Matrices
In a typical communications problem, Toeplitz matrices Φ arise when modeling the task of determining an unknown impulse response a from a given probe signal φ. When a is sparse, then whenever Φ formed from the probe signal φ satisfy the Restricted Isometry Property (RIP), a can be robustly recovered from its measurements via l1-minimization. In this paper, we derived the RIP for compressive Toe...
متن کاملSensing Matrix Design via Capacity Maximization for Block Compressive Sensing Applications
It is well established in the compressive sensing (CS) literature that sensing matrices whose elements are drawn from independent random distributions exhibit enhanced reconstruction capabilities. In many CS applications, such as electromagnetic imaging, practical limitations on the measurement system prevent one from generating sensing matrices in this fashion. Although one can usually randomi...
متن کاملTechnical Report: Observability with Random Observations
Recovery of the initial state of a high-dimensional system can require a large number of measurements. In this paper, we explain how this burden can be significantly reduced when randomized measurement operators are employed. Our work builds upon recent results from Compressive Sensing (CS). In particular, we make the connection to CS analysis for random block diagonal matrices. By deriving Con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010